Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.455
Filtrar
1.
Microb Pathog ; 190: 106641, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588925

RESUMO

This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.


Assuntos
Adjuvantes Imunológicos , Antioxidantes , Bivalves , Kefir , Probióticos , Superóxido Dismutase , Vibrio alginolyticus , Animais , Probióticos/farmacologia , Bivalves/química , Bivalves/microbiologia , Antioxidantes/metabolismo , Kefir/microbiologia , Superóxido Dismutase/metabolismo , Spirulina/química , Malondialdeído/metabolismo , Malondialdeído/análise , Ração Animal , Monofenol Mono-Oxigenase/metabolismo , Suplementos Nutricionais , Fosfatase Alcalina/metabolismo , Muramidase/metabolismo , Vibrioses/prevenção & controle
2.
J Hazard Mater ; 470: 134147, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565017

RESUMO

Microplastics and antibiotics are prevalent and emerging pollutants in aquatic ecosystems, but their interactions in aquatic food chains remain largely unexplored. This study investigated the impact of polypropylene microplastics (PP-MPs) on oxytetracycline (OTC) trophic transfer from the shrimp (Neocaridina denticulate) to crucian carp (Carassius auratus) by metagenomic sequencing. The carrier effects of PP-MPs promoted OTC bioaccumulation and trophic transfer, which exacerbated enterocyte vacuolation and hepatocyte eosinophilic necrosis. PP-MPs enhanced the inhibitory effect of OTC on intestinal lysozyme activities and complement C3 levels in shrimp and fish, and hepatic immunoglobulin M levels in fish (p < 0.05). Co-exposure of MPs and OTC markedly increased the abundance of Actinobacteria in shrimp and Firmicutes in fish, which caused disturbances in carbohydrate, amino acid, and energy metabolism. Moreover, OTC exacerbated the enrichment of antibiotic resistance genes (ARGs) in aquatic animals, and PP-MPs significantly increased the diversity and abundance of ARGs and facilitated the trophic transfer of teta and tetm. Our findings disclosed the impacts of PP-MPs on the mechanism of antibiotic toxicity in aquatic food chains and emphasized the importance of gut microbiota for ARGs trophic transfer, which contributed to a deeper understanding of potential risks posed by complex pollutants on aquatic ecosystems.


Assuntos
Antibacterianos , Cadeia Alimentar , Microbioma Gastrointestinal , Microplásticos , Oxitetraciclina , Poluentes Químicos da Água , Animais , Oxitetraciclina/toxicidade , Microplásticos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Antibacterianos/toxicidade , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Polipropilenos , Carpa Dourada/genética , Carpa Dourada/metabolismo , Penaeidae/microbiologia , Penaeidae/efeitos dos fármacos , Muramidase/metabolismo
3.
Dev Comp Immunol ; 155: 105158, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467323

RESUMO

This study investigated the effects of two distinct probiotics, Leuconostoc mesenteroides B4 (B4) and Bacillus pumilus D5 (D5), along with their combination, on the diet of white shrimp (Litopenaeus vannamei) during an eight-week feeding trial. The diets tested included B4 + dextran at 107 CFU/g feed (the B4 group), D5 alone at 107 CFU/g feed (the D5 group), and a combination of B4 + dextran and D5 at 5 × 106 CFU/g feed each (the B4+dextran + D5 group). Relative to the control group, those administered probiotics exhibited moderate enhancements in growth. By the eighth week, the weight gain for the B4, D5, and B4+D5 groups was 696.50 ± 78.15%, 718.53 ± 130.73%, and 693.05 ± 93.79%, respectively, outperforming the control group's 691.66 ± 31.10% gain. The feed conversion ratio was most efficient in the B4 group (2.16 ± 0.06), closely followed by B4+D5 (2.21 ± 0.03) and D5 (2.22 ± 0.06), with the control group having the highest ratio (2.27 ± 0.03). While phenoloxidase activity was somewhat elevated in the B4 and D5 groups, no significant differences were noted in respiratory burst activity or total hemocyte count across all groups. Challenge tests at weeks 4 and 8 showed that the B4 + D5 combination offered superior protection against AHPND-causing Vibrio parahaemolyticus. The 4-week cumulative survival rate was highest in shrimp treated with B4 + dextran + D5 (56.25%), followed by B4 + dextran (31.25%), control (18.75%), and lowest in D5 (12.5%). By week 8, the B4 + dextran + D5 (43.75%) and B4 + dextran (37.5%) groups significantly outperformed the control group (6.25%, p < 0.05), with no significant difference observed between the D5 group (37.5%) and the control group at day 56. Analysis of the shrimp's foregut microbiota revealed an increase in unique OTUs in the B4 and B4 + D5 groups. Compared to the control, Proteobacteria abundance was reduced in all probiotic groups. Potential pathogens like Vibrio, Bacteroides, Neisseria, Botrytis, Clostridioides, and Deltaentomopoxvirus were detected in the control but were reduced or absent in probiotic groups. Beneficial microbes such as Methanobrevibacter and Dictyostelium in the B4+D5 group, and Sugiyamaella in the B4 group, showed significant increases. Probiotics also led to higher transcript levels of nitric oxide synthase in the hemocytes, and lysozyme and transglutaminase in the midgut, along with lysozyme and α2-macroglobulin in the foregut. Notably, the combined B4 + D5 probiotics synergistically enhanced the expression of superoxide dismutase and prophenoloxidase in the foregut, indicating an improved immune response. In summary, this study demonstrates that the probiotics evaluated, especially when used in combination, significantly boost the expression of specific immune-related genes, enhance the bacterial diversity and richness of the intestine, and thus prevent the colonization and proliferation of Vibrio spp. in L. vannamei.


Assuntos
Bacillus , Dictyostelium , Leuconostoc mesenteroides , Penaeidae , Probióticos , Vibrio parahaemolyticus , Animais , Resistência à Doença , Muramidase/metabolismo , Leuconostoc , Dextranos/metabolismo , Vibrio parahaemolyticus/fisiologia , Dieta , Imunidade Inata
4.
J Chem Inf Model ; 64(8): 3269-3277, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38546407

RESUMO

The use of computer simulation for binding affinity prediction is growing in drug discovery. However, its wider use is constrained by the accuracy of the free energy calculations. The key sources of error are the force fields used to depict molecular interactions and insufficient sampling of the configurational space. To improve the quality of the force field, we developed a Python-based computational workflow. The workflow described here uses the minimal basis iterative stockholder (MBIS) method to determine atomic charges and Lennard-Jones parameters from the polarized molecular density. This is done by performing electronic structure calculations on various configurations of the ligand when it is both bound and unbound. In addition, we validated a simulation procedure that accounts for the protein and ligand degrees of freedom to precisely calculate binding free energies. This was achieved by comparing the self-adjusted mixture sampling and nonequilibrium thermodynamic integration methods using various protein and ligand conformations. The accuracy of predicting binding affinity is improved by using MBIS-derived force field parameters and a validated simulation procedure. This improvement surpasses the chemical precision for the eight aromatic ligands, reaching a root-mean-square error of 0.7 kcal/mol.


Assuntos
Muramidase , Ligação Proteica , Termodinâmica , Muramidase/química , Muramidase/metabolismo , Ligantes , Elétrons , Bacteriófago T4/enzimologia , Mutação , Conformação Proteica , Simulação de Dinâmica Molecular , Modelos Moleculares
5.
Front Immunol ; 15: 1342210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318186

RESUMO

This study aimed to assess the impact of dietary selenoprotein extracts from Cardamine hupingshanensis (SePCH) on the growth, hematological parameters, selenium metabolism, immune responses, antioxidant capacities, inflammatory reactions and intestinal barrier functions in juvenile largemouth bass (Micropterus salmoides). The base diet was supplemented with four different concentrations of SePCH: 0.00, 0.30, 0.60 and 1.20 g/Kg (actual selenium contents: 0.37, 0.59, 0.84 and 1.30 mg/kg). These concentrations were used to formulate four isonitrogenous and isoenergetic diets for juvenile largemouth bass during a 60-day culture period. Adequate dietary SePCH (0.60 and 1.20 g/Kg) significantly increased weight gain and daily growth rate compared to the control groups (0.00 g/Kg). Furthermore, 0.60 and 1.20 g/Kg SePCH significantly enhanced amounts of white blood cells, red blood cells, platelets, lymphocytes and monocytes, and levels of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin in the hemocytes. In addition, 0.60 and 1.20 g/Kg SePCH increased the mRNA expression levels of selenocysteine lyase, selenophosphate synthase 1, 15 kDa selenoprotein, selenoprotein T2, selenoprotein H, selenoprotein P and selenoprotein K in the fish liver and intestine compared to the controls. Adequate SePCH not only significantly elevated the activities of antioxidant enzymes (Total superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), the levels of total antioxidant capacity and glutathione, while increased mRNA transcription levels of NF-E2-related factor 2, Cu/Zn-superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase. However, adequate SePCH significantly decreased levels of malondialdehyde and H2O2 and the mRNA expression levels of kelch-like ECH-associated protein 1a and kelch-like ECH-associated protein 1b in the fish liver and intestine compared to the controls. Meanwhile, adequate SePCH markedly enhanced the levels of immune factors (alkaline phosphatase, acid phosphatase, lysozyme, complement component 3, complement component 4 and immunoglobulin M) and innate immune-related genes (lysozyme, hepcidin, liver-expressed antimicrobial peptide 2, complement component 3 and complement component 4) in the fish liver and intestine compared to the controls. Adequate SePCH reduced the levels of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin 8, interleukin 1ß and interferon γ), while increasing transforming growth factor ß1 levels at both transcriptional and protein levels in the liver and intestine. The mRNA expression levels of mitogen-activated protein kinase 13 (MAPK 13), MAPK14 and nuclear factor kappa B p65 were significantly reduced in the liver and intestine of fish fed with 0.60 and 1.20 g/Kg SePCH compared to the controls. Histological sections also demonstrated that 0.60 and 1.20 g/Kg SePCH significantly increased intestinal villus height and villus width compared to the controls. Furthermore, the mRNA expression levels of tight junction proteins (zonula occludens-1, zonula occludens-3, Claudin-1, Claudin-3, Claudin-5, Claudin-11, Claudin-23 and Claudin-34) and Mucin-17 were significantly upregulated in the intestinal epithelial cells of 0.60 and 1.20 g/Kg SePCH groups compared to the controls. In conclusion, these results found that 0.60 and 1.20 g/Kg dietary SePCH can not only improve growth, hematological parameters, selenium metabolism, antioxidant capacities, enhance immune responses and intestinal functions, but also alleviate inflammatory responses. This information can serve as a useful reference for formulating feeds for largemouth bass.


Assuntos
Bass , Cardamine , Selênio , Animais , Antioxidantes/metabolismo , Catalase , Bass/genética , Muramidase/metabolismo , Selênio/farmacologia , Cardamine/genética , Cardamine/metabolismo , Glutationa Redutase/genética , Peróxido de Hidrogênio , Intestinos , Selenoproteínas , RNA Mensageiro/genética , Glutationa Peroxidase/genética , Superóxido Dismutase/genética , Claudinas
6.
J Innate Immun ; 16(1): 173-187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38387449

RESUMO

INTRODUCTION: The brain is considered as an immune-privileged organ, yet innate immune reactions can occur in the central nervous system of vertebrates and invertebrates. Silkworm (Bombyx mori) is an economically important insect and a lepidopteran model species. The diversity of cell types in the silkworm brain, and how these cell subsets produce an immune response to virus infection, remains largely unknown. METHODS: Single-nucleus RNA sequencing (snRNA-seq), bioinformatics analysis, RNAi, and other methods were mainly used to analyze the cell types and gene functions of the silkworm brain. RESULTS: We used snRNA-seq to identify 19 distinct clusters representing Kenyon cell, glial cell, olfactory projection neuron, optic lobes neuron, hemocyte-like cell, and muscle cell types in the B. mori nucleopolyhedrovirus (BmNPV)-infected and BmNPV-uninfected silkworm larvae brain at the late stage of infection. Further, we found that the cell subset that exerts an antiviral function in the silkworm larvae brain corresponds to hemocytes. Specifically, antimicrobial peptides were significantly induced by BmNPV infection in the hemocytes, especially lysozyme, exerting antiviral effects. CONCLUSION: Our single-cell dataset reveals the diversity of silkworm larvae brain cells, and the transcriptome analysis provides insights into the immune response following virus infection at the single-cell level.


Assuntos
Bombyx , Encéfalo , Hemócitos , Imunidade Inata , Larva , Muramidase , Animais , Bombyx/imunologia , Bombyx/virologia , Encéfalo/imunologia , Encéfalo/virologia , Larva/imunologia , Larva/virologia , Hemócitos/imunologia , Muramidase/metabolismo , Muramidase/genética , Nucleopoliedrovírus/fisiologia , Nucleopoliedrovírus/imunologia , Análise de Célula Única , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
7.
Biosci Biotechnol Biochem ; 88(5): 546-554, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38409797

RESUMO

Human lysozyme (hLYZ) has attracted considerable research attention due to its natural and efficient antibacterial abilities and widespread uses. In this study, hLYZ was modified to enhance its enzyme activity and expressed in a Pichia pastoris expression system. A combination mutant HZM(2R-K)-N88D/V110S demonstrated the highest enzyme activity (6213 ± 164 U/mL) in shake flasks, which was 4.07-fold higher when compared with the original strain. Moreover, the recombinant P. pastoris was inducted in a 3 L bioreactor plus methanol/sorbitol co-feeding. After 120 h induction, the antibacterial activity of hLYZ reached 2.23 ± 0.12 × 105 U/mL, with the specific activity increasing to 1.89 × 105 U/mg, which is currently the highest specific activity obtained through recombinant expression of hLYZ. Also, hLYZ supernatants showed 2-fold inhibitory effects toward Staphylococcus aureus and Micrococcus lysodeikticus when compared with HZM(2R-K). Our research generated a hLYZ mutant with high antibacterial capabilities and provided a method for screening of high-quality enzymes.


Assuntos
Antibacterianos , Muramidase , Proteínas Recombinantes , Staphylococcus aureus , Muramidase/genética , Muramidase/farmacologia , Muramidase/metabolismo , Antibacterianos/farmacologia , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Reatores Biológicos , Micrococcus/efeitos dos fármacos , Expressão Gênica , Mutação , Saccharomycetales/genética , Testes de Sensibilidade Microbiana
8.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338734

RESUMO

(1) The aim of the study was to analyze the salivary concentrations of lysozyme, lactoferrin, and sIgA antibodies in adult patients in the late period after allogeneic stem cell transplantation (alloHSCT). The relationship between these concentrations and the salivary secretion rate and the time elapsed after alloHSCT was investigated. The relationship between the concentrations of lysozyme, lactoferrin, and sIgA and the titer of the cariogenic bacteria S. mutans and L. acidophilus was assessed. (2) The study included 54 individuals, aged 19 to 67 (SD = 40.06 ± 11.82; Me = 39.5), who were 3 to 96 months after alloHSCT. The concentrations of lysozyme, lactoferrin, and sIgA were assessed in mixed whole resting saliva (WRS) and mixed whole stimulated saliva (WSS). (3) The majority of patients had very low or low concentrations of the studied salivary components (WRS-lysozyme: 52, lactoferrin: 36, sIgA: 49 patients; WSS-lysozyme: 51, lactoferrin: 25, sIgA: 51 patients). The levels of lactoferrin in both WRS and WSS were statistically significantly higher in the alloHSCT group than in the control group (CG) (alloHSCT patients-WRS: M = 40.18 µg/mL; WSS: M = 27.33 µg/mL; CG-WRS: M = 17.58 µg/mL; WSS: 10.69 µg/mL). No statistically significant correlations were observed between lysozyme, lactoferrin, and sIgA concentrations and the time after alloHSCT. In the group of patients after alloHSCT a negative correlation was found between the resting salivary flow rate and the concentration of lactoferrin and sIgA. The stimulated salivary flow rate correlated negatively with lactoferrin and sIgA concentrations. Additionally, the number of S. mutans colonies correlated positively with the concentration of lysozyme and sIgA. (4) The concentrations of non-specific and specific immunological factors in the saliva of patients after alloHSCT may differ when compared to healthy adults; however, the abovementioned differences did not change with the time after transplantation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Muramidase , Adulto , Humanos , Muramidase/metabolismo , Lactoferrina/metabolismo , Saliva/metabolismo , Imunoglobulina A Secretora/metabolismo , Proteínas e Peptídeos Salivares
9.
Front Cell Infect Microbiol ; 14: 1304218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352055

RESUMO

Objective: The current study sought to clarify the role of lysozyme-regulated gut microbiota and explored the potential therapeutic effects of lysozyme on ileum injury induced by severe traumatic brain injury (sTBI) and bacterial pneumonia in vivo and in vitro experiments. Methods: Male 6-8-week-old specific pathogen-free (SPF) C57BL/6 mice were randomly divided into Normal group (N), Sham group (S), sTBI group (T), sTBI + or Lysozyme-treated group (L), Normal + Lysozyme group (NL) and Sham group + Lysozyme group (SL). At the day 7 after establishment of the model, mice were anesthetized and the samples were collected. The microbiota in lungs and fresh contents of the ileocecum were analyzed. Lungs and distal ileum were used to detect the degree of injury. The number of Paneth cells and the expression level of lysozyme were assessed. The bacterial translocation was determined. Intestinal organoids culture and co-coculture system was used to test whether lysozyme remodels the intestinal barrier through the gut microbiota. Results: After oral administration of lysozyme, the intestinal microbiota is rebalanced, the composition of lung microbiota is restored, and translocation of intestinal bacteria is mitigated. Lysozyme administration reinstates lysozyme expression in Paneth cells, thereby reducing intestinal permeability, pathological score, apoptosis rate, and inflammation levels. The gut microbiota, including Oscillospira, Ruminococcus, Alistipes, Butyricicoccus, and Lactobacillus, play a crucial role in regulating and improving intestinal barrier damage and modulating Paneth cells in lysozyme-treated mice. A co-culture system comprising intestinal organoids and brain-derived proteins (BP), which demonstrated that the BP effectively downregulated the expression of lysozyme in intestinal organoids. However, supplementation of lysozyme to this co-culture system failed to restore its expression in intestinal organoids. Conclusion: The present study unveiled a virtuous cycle whereby oral administration of lysozyme restores Paneth cell's function, mitigates intestinal injury and bacterial translocation through the remodeling of gut microbiota.


Assuntos
Lesões Encefálicas Traumáticas , Microbioma Gastrointestinal , Masculino , Camundongos , Animais , Muramidase/metabolismo , Muramidase/farmacologia , Disbiose/microbiologia , Camundongos Endogâmicos C57BL , Íleo/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/microbiologia , Administração Oral
10.
Int J Biol Macromol ; 259(Pt 2): 129297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211927

RESUMO

Importance of metal ion selectivity in biomolecules and their key role in proteins are widely explored. However, understanding the thermodynamics of how hydrated metal ions alter the protein hydration and their conformation is also important. In this study, the interaction of some biologically important Ca2+, Mn2+, Co2+, Cu2+, and Zn2+ ions with hen egg white lysozyme at pH 2.1, 3.0, 4.5 and 7.4 has been investigated. Intrinsic fluorescence studies have been employed for metal ion-induced protein conformational changes analysis. Thermostability based on protein hydration has been investigated using differential scanning calorimetry (DSC). Thermodynamic parameters emphasizing on metal ion-protein binding mechanistic insights have been well discussed using isothermal titration calorimetry (ITC). Overall, these experiments have reported that their interactions are pH-dependent and entropically driven. This research also reports the strongly hydrated metal ions as water structure breaker unlike osmolytes based on DSC studies. These experimental results have highlighted higher concentrations of different metal ions effect on the protein hydration and thermostability which might be helpful in understanding their interactions in aqueous solutions.


Assuntos
Clara de Ovo , Muramidase , Muramidase/metabolismo , Metais/metabolismo , Proteínas , Termodinâmica , Íons , Calorimetria/métodos , Concentração de Íons de Hidrogênio
11.
IEEE Trans Nanobioscience ; 23(1): 3-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37058385

RESUMO

Alzheimer's disease is considered as multi-factor diseases, the main hallmarks of which are extracellular amyloid-beta and intracellular tau protein aggregations, leading to neural death. With this in mind, most of the studies have been focused on eliminating these aggregations. Fulvic acid is one of the polyphenolic compounds which exhibits strong anti-inflammation and anti-amyloidogenic effects. On the other hand, iron oxide nanoparticles are able to reduce/eliminate the amyloid aggregations. Here in, the effect of fulvic acid-coated iron-oxide nanoparticles on the commonly used in-vitro model for amyloid aggregation studies, i. e., lysozyme from chicken egg white was investigated. The chicken egg white lysozyme forms the amyloid aggregation under acidic pH and high heat. The average size of nanoparticles was 10.7±2.7 nm. FESEM, XRD, and FTIR confirmed that fulvic acid was coated onto the surface of the nanoparticles. The inhibitory effects of the nanoparticles were verified by Thioflavin T assay, CD, and FESEM analysis. Furthermore, the toxicity of the nanoparticles on the neuroblastoma SH-SY5Y was assessed through MTT assay. Our results indicate that these nanoparticles efficiently inhibit amyloid aggregation formation, while exhibiting no in-vitro toxicity. This data shed light on the anti-amyloid activity of the nanodrug; paving the way for future drug development for treating Alzheimer's disease.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Amiloide/química , Amiloide/metabolismo , Doença de Alzheimer/tratamento farmacológico , Muramidase/química , Muramidase/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro
12.
Bioresour Technol ; 393: 130065, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984671

RESUMO

To improve the efficiency of aerobic digestion, this investigation utilized the synergistic effect of lysozyme-producing strain YH14 and surfactant-producing strain ZXY4 to promote sludge hydrolysis, and added NaCl to enhance this promoting effect. The best performance in promoting sludge hydrolysis was achieved when the inoculum of functional bacteria was 12 % (inoculum ratio of strain YH14: strain ZXY4 = 1:3) and the dosage of NaCl was 5 g L-1, which caused an increase of 19.25 % in the SS removal rate and 2588.21 mg L-1 in the SCOD release, as compared with the control. Fluorescence region integral analysis shows that the synergy of two functional bacteria and NaCl can enhance the biodegradability of sludge. Protein secondary structure analysis shows that strain ZXY4 and Na+ cause the EPS structure to loosen, increasing the chances of lysozyme lysis of bacteria. Nucleotide metabolism, metabolism of other amino acids and membrane transport enhanced in a co-processing system.


Assuntos
Muramidase , Esgotos , Muramidase/metabolismo , Esgotos/microbiologia , Tensoativos/metabolismo , Cloreto de Sódio/metabolismo , Eliminação de Resíduos Líquidos , Bactérias/metabolismo , Hidrólise
13.
Luminescence ; 39(1): e4618, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37937696

RESUMO

The interactions between drugs and proteins play a pivotal role in determining the pharmacological effects and disposition of drugs within the human body. This study focuses on exploring the interaction between nitrendipine and lysozyme/human serum albumin. Spectroscopic analysis indicated a compound static quenching, indicative of the formation of stable complexes between the drug and proteins. The addition of vitamin C or naringin resulted in a decrease of the binding constant between nitrendipine and lysozyme/human serum albumin. The presence of these compounds may disrupt the interactions between the drug and proteins, potentially leading to an increased concentration of free nitrendipine in the bloodstream. Nitrendipine binds more easily to human serum albumin at 310 K, and human serum albumin has an average binding site ratio with nitrendipine approximately 0.1 higher than that with lysozyme. Vitamin C has a greater impact on the binding constant of nitrendipine to human serum albumin and lysozyme. Compared to the binary system of proteins with the drug, the ternary system with the addition of vitamin C at 310 K reduces the binding constants of lysozyme and human serum albumin by 85%. In conclusion, this study explores the significance of considering drug-protein interactions in understanding drug behavior and potential drug-food interactions.


Assuntos
Flavanonas , Nitrendipino , Albumina Sérica Humana , Humanos , Ácido Ascórbico , Sítios de Ligação , Dicroísmo Circular , Simulação de Acoplamento Molecular , Muramidase/metabolismo , Ligação Proteica , Conformação Proteica , Albumina Sérica Humana/química , Espectrometria de Fluorescência , Termodinâmica
14.
Biochem Biophys Res Commun ; 691: 149307, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38011821

RESUMO

Many proteins and peptides can aggregate into amyloid fibrils with high-ordered and cross-ß rich structure characteristics. Amyloid deposition is a common feature of neurodegenerative diseases called amyloidosis. Various natural polyphenolic compounds such as curcumin exhibited antiamyloidogenic activities, but less researches were focused on the metal complexes of these compounds. In this study, the inhibitory effects of gallium curcumin (Ga(cur)3), indium curcumin (In(cur)3), and vanadyl curcumin (VO(cur)2) on the amyloid fibrillation of hen egg white lysozyme (HEWL) have been investigated. Moreover, the details of binding interactions of these metal complexes with HEWL have been explored. The results of fluorescence quenching analyses revealed that In(cur)3 and VO(cur)2 have much higher binding affinities than Ga(cur)3 toward HEWL. The interactions of these metal complexes were accompanied by partial conformational changes in the tertiary structure of HEWL. The kinetic curves of the fibrillation process demonstrated that In(cur)3 and VO(cur)2 have higher inhibitory effects than Ga(cur)3 on the amyloid fibrillation of HEWL. The strength of binding to HEWL is completely in accordance with inhibitory activities of these metal complexes of curcumin.


Assuntos
Complexos de Coordenação , Curcumina , Gálio , Curcumina/farmacologia , Curcumina/química , Gálio/farmacologia , Índio , Vanadatos , Muramidase/metabolismo , Amiloide/metabolismo
15.
Braz J Microbiol ; 55(1): 215-233, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146050

RESUMO

This study is an extension of our previous studies in which the lysozyme was isolated and purified from Bacillus subtilis BSN314 (Naveed et al., 2022; Naveed et al., 2023). In this study, the lysozyme genes were cloned into the E. coli BL21. For the expression of lysozyme in E. coli BL21, two target genes, Lyz-1 and Lyz-2, were ligated into the modified vector pET28a to generate pET28a-Lyz1 and pET28a-Lyz2, respectively. To increase the production rate of the enzyme, 0.5-mM concentration of IPTG was added to the culture media and incubated at 37 °C and 220 rpm for 24 h. Lyz1 was identified as N-acetylmuramoyl-L-alanine amidase and Lyz2 as D-alanyl-D-alanine carboxypeptidase. They were purified by multi-step methodology (ammonium sulfate, precipitation, dialysis, and ultrafiltration), and antimicrobial activity was determined. For Lyz1, the lowest MIC/MBC (0.25 µg/mL; with highest ZOI = 22 mm) were recorded against Micrococcus luteus, whereas the highest MIC/MBC with lowest ZOI were measured against Salmonella typhimurium (2.50 µg /mL; with ZOI = 10 mm). As compared with Aspergillus oryzae (MIC/MFC; 3.00 µg/mL), a higher concentration of lysozyme was required to control the growth of Saccharomyces cerevisiae (MIC/MFC; 50 µg/mL). Atomic force microscopy (AFM) was used to analyze the disintegrating effect of Lyz1 on the cells of selected Gram-positive bacteria, Gram-negative bacteria, and yeast. The AFM results showed that, as compared to Gram-negative bacteria, a lower concentration of lysozyme (Lyz1) was required to disintegrate the cell of Gram-positive bacteria.


Assuntos
Anti-Infecciosos , Muramidase , Muramidase/genética , Muramidase/farmacologia , Muramidase/metabolismo , Escherichia coli , Anti-Infecciosos/farmacologia , Bacillus subtilis/genética
16.
Methods Mol Biol ; 2727: 27-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37815706

RESUMO

Innately present in tears, saliva and mucosal secretions, lysozyme provides a critical defensive strategy to the host by cleaving the ß-1,4-glycosidic bonds between N-acetylmuramic acid and N-acetyl-D-glucosamine residues of peptidoglycan of invading bacteria, leading to bacterial lysis. To counter this class of cell wall hydrolase enzymes, bacteria produce several lysozyme inhibitors, a representative of which, MliC, was identified in Escherichia coli, Pseudomonas aeruginosa, and various bacterial species. The Gram-negative oral anaerobe Fusobacterium nucleatum encodes an uncharacterized lipoprotein homologous to MliC, whose localization is unknown. Here, we provide an experimental procedure to localize this MliC-like lipoprotein by employing immunofluorescence microscopy. In principle, this protocol can be used for any bacterial system to monitor protein localization.


Assuntos
Fusobacterium nucleatum , Muramidase , Muramidase/metabolismo , Bactérias , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Parede Celular
17.
Pestic Biochem Physiol ; 197: 105696, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072551

RESUMO

Chiral pesticides may exhibit enantioselectivity in terms of bioconcentration, environmental fate, and reproductive toxicity. Here, chiral prothioconazole and its metabolites were selected to thoroughly investigate their enantioselective toxicity and mechanisms at the molecular and cellular levels. Multispectral techniques revealed that the interaction between chiral PTC/PTCD and lysozyme resulted in the formation of a complex, leading to a change in the conformation of lysozyme. Meanwhile, the effect of different conformations of PTC/PTCD on the conformation of lysozyme differed, and its metabolites were able to exert a greater effect on lysozyme compared to prothioconazole. Moreover, the S-configuration of PTCD interacted most strongly with lysozyme. This conclusion was further verified by DFT calculations and molecular docking as well. Furthermore, the oxidative stress indicators within HepG2 cells were also affected by chiral prothioconazole and its metabolites. Specifically, S-PTCD induced more substantial perturbation of the normal oxidative stress processes in HepG2 cells, and the magnitude of the perturbation varied significantly among different configurations (P > 0.05). Overall, chiral prothioconazole and its metabolites exhibit enantioselective effects on lysozyme conformation and oxidative stress processes in HepG2 cells. This work provides a scientific basis for a more comprehensive risk assessment of the environmental behaviors and effects caused by chiral pesticides, as well as for the screening of highly efficient and less biotoxic enantiomeric monomers.


Assuntos
Fungicidas Industriais , Praguicidas , Humanos , Fungicidas Industriais/farmacologia , Estereoisomerismo , Simulação de Acoplamento Molecular , Células Hep G2 , Muramidase/metabolismo , Estresse Oxidativo
18.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069163

RESUMO

Cows produce saliva in very large quantities to lubricate and facilitate food processing. Estimates indicate an amount of 50-150 L per day. Human saliva has previously been found to contain numerous antibacterial components, such as lysozyme, histatins, members of the S-100 family and lactoferrin, to limit pathogen colonization. Cows depend on a complex microbial community in their digestive system for food digestion. Our aim here was to analyze how this would influence the content of their saliva. We therefore sampled saliva from five humans and both nose secretions and saliva from six cows and separated the saliva on SDS-PAGE gradient gels and analyzed the major protein bands with LC-MS/MS. The cow saliva was found to be dominated by a few major proteins only, carbonic anhydrase 6, a pH-stabilizing enzyme and the short palate, lung and nasal epithelium carcinoma-associated protein 2A (SPLUNC2A), also named bovine salivary protein 30 kDa (BSP30) or BPIFA2B. This latter protein has been proposed to play a role in local antibacterial response by binding bacterial lipopolysaccharides (LPSs) and inhibiting bacterial growth but may instead, according to more recent data, primarily have surfactant activity. Numerous peptide fragments of mucin-5B were also detected in different regions of the gel in the MS analysis. Interestingly, no major band on gel was detected representing any of the antibacterial proteins, indicating that cows may produce them at very low levels that do not harm the microbial flora of their digestive system. The nose secretions of the cows primarily contained the odorant protein, a protein thought to be involved in enhancing the sense of smell of the olfactory receptors and the possibility of quickly sensing potential poisonous food components. High levels of secretory IgA were also found in one sample of cow mouth drippings, indicating a strong upregulation during an infection. The human saliva was more complex, containing secretory IgA, amylase, carbonic anhydrase 6, lysozyme, histatins and a number of other less abundant proteins, indicating a major difference to the saliva of cows that show very low levels of antibacterial components, most likely to not harm the microbial flora of the rumen.


Assuntos
Muramidase , Saliva , Humanos , Feminino , Bovinos , Animais , Saliva/metabolismo , Muramidase/metabolismo , Histatinas/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas e Peptídeos Salivares/metabolismo , Imunoglobulina A Secretora/metabolismo , Antibacterianos/metabolismo
19.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138993

RESUMO

Verticillium wilt is a soil-borne vascular disease caused by the fungal pathogen Verticillium dahliae. It causes great harm to upland cotton (Gossypium hirsutum) yield and quality. A previous study has shown that Hen egg white lysozyme (HEWL) exerts strong inhibitory activity against V. dahliae in vitro. In the current study, we introduced the HEWL gene into cotton through the Agrobacterium-mediated transformation, and the exogenous HEWL protein was successfully expressed in cotton. Our study revealed that HEWL was able to significantly inhibit the proliferation of V. dahlia in cotton. Consequently, the overexpression of HEWL effectively improved the resistance to Verticillium wilt in transgenic cotton. In addition, ROS accumulation and NO content increased rapidly after the V. dahliae inoculation of plant leaves overexpressing HEWL. In addition, the expression of the PR genes was significantly up-regulated. Taken together, our results suggest that HEWL significantly improves resistance to Verticillium wilt by inhibiting the growth of pathogenic fungus, triggering ROS burst, and activating PR genes expression in cotton.


Assuntos
Gossypium , Verticillium , Gossypium/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Verticillium/metabolismo , Muramidase/metabolismo , Clara de Ovo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Arch Virol ; 168(12): 293, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973637

RESUMO

Understanding the role of salivary constituents, such as lactoferrin, lysozyme, and secretory immunoglobulin A (sIgA), in immune protection and defense mechanisms against microbial invasion and colonization of the airways is important in light of the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The salivary immune barrier in individuals affected by COVID-19 may contribute to disease prognosis. Thus, the aim of the present review is to evaluate the effect of COVID-19 vaccines on the immunological composition of saliva. IgA antibodies generated by vaccination can neutralize the virus at mucosal surfaces, whereas antimicrobial peptides, such as lysozyme and lactoferrin, have broad-spectrum antimicrobial activity. Collectively, these components contribute to the protective immune response of the oral cavity and may help minimize viral transmission as well as the severity of COVID-19. Measuring the levels of these components in the saliva of COVID-19-vaccinated individuals can help in evaluating the vaccine's ability to induce mucosal immunity, and it might also provide insights into whether saliva can be used in diagnostics or surveillance for monitoring immune responses following vaccination. This also has implications for viral transmission.


Assuntos
COVID-19 , Muramidase , Humanos , Muramidase/análise , Muramidase/metabolismo , Vacinas contra COVID-19 , Lactoferrina/metabolismo , Saliva , COVID-19/prevenção & controle , SARS-CoV-2/metabolismo , Imunoglobulina A , Vacinação , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...